32,237 research outputs found

    Gas flow environment and heat transfer nonrotating 3D program

    Get PDF
    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is provided. These data are to be used to evaluate, and verify, three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select a computational code and define the capabilities of this code to predict the experimental results obtained. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated. Internal flow in a large rectangular cross-sectioned 90 deg. bend turning duct was studied. The duct construction was designed to allow detailed measurements to be made for the following three duct wall conditions: (1) an isothermal wall with isothermal flow; (2) an adiabatic wall with convective heat transfer by mixing between an unheated surrounding flow; and (3) an isothermal wall with heat transfer from a uniformly hot inlet flow

    UREA/ammonium ion removal system for the orbiting frog otolith experiment

    Get PDF
    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown

    Perturbative test of single parameter scaling for 1D random media

    Full text link
    Products of random matrices associated to one-dimensional random media satisfy a central limit theorem assuring convergence to a gaussian centered at the Lyapunov exponent. The hypothesis of single parameter scaling states that its variance is equal to the Lyapunov exponent. We settle discussions about its validity for a wide class of models by proving that, away from anomalies, single parameter scaling holds to lowest order perturbation theory in the disorder strength. However, it is generically violated at higher order. This is explicitely exhibited for the Anderson model.Comment: minor corrections to previous version, to appear in Annales H. Poincar

    Spin-orbit coupling and spectral function of interacting electrons in carbon nanotubes

    Get PDF
    The electronic spin-orbit coupling in carbon nanotubes is strongly enhanced by the curvature of the tube surface and has important effects on the single-particle spectrum. Here, we include the full spin-orbit interaction in the formulation of the effective low-energy theory for interacting electrons in metallic single-wall carbon nanotubes and study its consequences. The resulting theory is a four-channel Luttinger liquid, where spin and charge modes are mixed. We show that the analytic structure of the spectral function is strongly affected by this mixing, which can provide an experimental signature of the spin-orbit interaction.Comment: 4+epsilon pages, 1 figure; published versio

    Dynamical Ne K Edge and Line Variations in the X-Ray Spectrum of the Ultra-compact Binary 4U 0614+091

    Get PDF
    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ksec with the high-energy transmission gratings onboard the \chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0×1036\times10^{36} \ergsec and 3.5×1036\times10^{36} \ergsec. Continuum variations are present at all times and spectra can be well fit with a powerlaw component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. The Ne K edge appears variable in terms of optical depths and morphology. The edge reveals average blue- and red-shifted values implying Doppler velocities of the order of 3500 \kms. The data show that Ne K exhibits excess column densities of up to several 1018^{18} cm−2^{-2}. The variability proves that the excess is intrinsic to the source. The correponding disk velocities also imply an outer disk radius of the order of <109< 10^9 cm consistent with an ultra-compact binary nature. We also detect a prominent soft emission line complex near the \oviii Lα\alpha position which appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination between 86 and 89∘^{\circ}. The emissions appear consistent with an ionized disk with ionization parameters of the order of 104^4 at radii of a few 107^7 cm. The line wavelengths with respect to \oviiia\ are found variably blue-shifted indicating more complex inner disk dynamics.Comment: 24 pages, 8 figures, submitted to the Astrophyscial Main Journa

    RSB Decoupling Property of MAP Estimators

    Full text link
    The large-system decoupling property of a MAP estimator is studied when it estimates the i.i.d. vector x\boldsymbol{x} from the observation y=Ax+z\boldsymbol{y}=\mathbf{A}\boldsymbol{x}+\boldsymbol{z} with A\mathbf{A} being chosen from a wide range of matrix ensembles, and the noise vector z\boldsymbol{z} being i.i.d. and Gaussian. Using the replica method, we show that the marginal joint distribution of any two corresponding input and output symbols converges to a deterministic distribution which describes the input-output distribution of a single user system followed by a MAP estimator. Under the bbRSB assumption, the single user system is a scalar channel with additive noise where the noise term is given by the sum of an independent Gaussian random variable and bb correlated interference terms. As the bbRSB assumption reduces to RS, the interference terms vanish which results in the formerly studied RS decoupling principle.Comment: 5 pages, presented in Information Theory Workshop 201
    • …
    corecore